If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+28x-23=40
We move all terms to the left:
x^2+28x-23-(40)=0
We add all the numbers together, and all the variables
x^2+28x-63=0
a = 1; b = 28; c = -63;
Δ = b2-4ac
Δ = 282-4·1·(-63)
Δ = 1036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1036}=\sqrt{4*259}=\sqrt{4}*\sqrt{259}=2\sqrt{259}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{259}}{2*1}=\frac{-28-2\sqrt{259}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{259}}{2*1}=\frac{-28+2\sqrt{259}}{2} $
| X^2+40x-15=40 | | 2(3w-1)-4w=-3(w+2)+2 | | 1000-4/5=x | | x(6)-12+4=30 | | X^3+4x=40 | | 3(s+4)=1 | | 15+2t=17-t | | 12h-4=12 | | 4x/15=2 | | 52=d−2/4 | | 2x-73=823 | | x-73-x=823 | | x-73+x=823 | | (h^2/2)=18 | | x-64+x=636 | | 5x+2(x-5)=4x | | 9x+3=32 | | x+8+x=82 | | b-6/5=-1 | | 9x2-120x-2025=0 | | x^2-36=(x-6)(x+6) | | 5(x-2)=4(2x+) | | 3(x^2-2x-4)=-2(x^2+3x+6) | | (x-4/2)=6 | | 2x(2x)=400 | | 9x=11-8 | | 32(x+3)=45x−8 | | (3x+20)(+2x+80)=180 | | 3x+20=180+2x+80 | | 3x+20=1802x+80 | | 3x+40=x+30 | | -14x+-2=-5x+-18 |